
Real-Time Fusion of Image and Inertial Sensors
for Navigation

J. Fletcher, M. Veth, and J. Raquet
Air Force Institute of Technology

BIOGRAPHY

Jordan Fletcher is a Communications and Electrical
Engineering Officer in the United States Air Force. He
holds a B.S. in Computer Engineering from Tulane
University. He is currently a Computer Engineering
Master’s student at the Air Force Institute of Technology,
with a focus on navigation technology and exploitation of
graphics hardware for general-purpose computing.

Major Mike Veth is an Assistant Professor in the
Department of Electrical and Computer Engineering at
the Air Force Institute of Technology. His current
research focus is on the fusion of optical and inertial
systems. He received his Ph.D. in Electrical Engineering
from the Air Force Institute of Technology, and a B.S. in
Electrical Engineering from Purdue University.

John Raquet is an Associate Professor in the Department
of Electrical and Computer Engineering at the Air Force
Institute of Technology, where he is also the Director of
the Advanced Navigation Technology (ANT) Center. He
has been involved in navigation-related research for over
17 years.

ABSTRACT

As evidenced by many biological systems, the fusion of
optical and inertial sensors represents an attractive
method for passive navigation. In our previous work, a
rigorous theory for optical and inertial fusion was
developed for precision navigation applications. The
theory was based on a statistical transformation of the
feature space based on inertial sensor measurements. The
transformation effectively constrained the feature
correspondence search to a given level of a priori
statistical uncertainty. When integrated into a navigation
system, the fused system demonstrated performance in
indoor environments which were comparable to that of
GPS-aided systems.

In order to improve feature tracking performance, a robust
feature transformation algorithm (Lowe’s SIFT) was
chosen. The SIFT features are ideal for navigation

applications in that they are invariant to scale, rotation,
and illumination. Unfortunately, there exists a correlation
between feature complexity and computer processing
time. This limits the effectiveness of robust feature
extraction algorithms for real-time applications using
traditional microprocessor architectures. While recent
advances in computer technology have made image
processing more commonplace, the amount of
information that can be processed is still limited by the
power and speed of the CPU. In this paper, a new theory
which exploits the highly parallel nature of General
Programmable Graphical Processing Units (GPGPU) is
developed which supports deeply integrated optical and
inertial sensors for real-time navigation.

Recent advances in GPGPU technology have made real-
time, image-aided navigation a reality. Our approach
leverages the existing OpenVIDIA core GPGPU library
and commercially available computer hardware to solve
the image and inertial fusion problem. The open-source
libraries are extended to include the statistical feature
projection and matching techniques developed in our
previous research.

The performance of the new processing method was
demonstrated by integrating the inertial and image sensors
on a commercially-available laptop computer containing a
programmable GPU. Experimental data collections have
shown up to a 3000% improvement in feature processing
speed over an equivalent CPU-based algorithm. In this
experimental configuration, frame rates of greater than 10
Hz are demonstrated, which are suitable for real-time
navigation. Finally, the navigation performance of the
new real-time system is shown to be identical to that of
the old method which required lengthy post-processing.

INTRODUCTION

The advent of the Global Positioning System (GPS) has
revolutionized the navigation community, and as a result
we are increasingly dependent on navigation systems, and
we want to be able to navigate in all environments. While
GPS works well in many environments, it is not ideal for
navigation indoors, underground, in urban canyons, or in

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Real-Time Fusion of Image and Inertial Sensors for Navigation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology,Department of Electrical and
Computer Engineering,Wright Patterson AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
As evidenced by many biological systems, the fusion of optical and inertial sensors represents an attractive
method for passive navigation. In our previous work, a rigorous theory for optical and inertial fusion was
developed for precision navigation applications. The theory was based on a statistical transformation of the
feature space based on inertial sensor measurements. The transformation effectively constrained the
feature correspondence search to a given level of a priori statistical uncertainty. When integrated into a
navigation system, the fused system demonstrated performance in indoor environments which were
comparable to that of GPS-aided systems. In order to improve feature tracking performance, a robust
feature transformation algorithm (Lowe?s SIFT) was chosen. The SIFT features are ideal for navigation
applications in that they are invariant to scale, rotation, and illumination. Unfortunately, there exists a
correlation between feature complexity and computer processing time. This limits the effectiveness of
robust feature extraction algorithms for real-time applications using traditional microprocessor
architectures. While recent advances in computer technology have made image processing more
commonplace, the amount of information that can be processed is still limited by the power and speed of
the CPU. In this paper, a new theory which exploits the highly parallel nature of General Programmable
Graphical Processing Units (GPGPU) is developed which supports deeply integrated optical and inertial
sensors for real-time navigation. Recent advances in GPGPU technology have made realtime, image-aided
navigation a reality. Our approach leverages the existing OpenVIDIA core GPGPU library and
commercially available computer hardware to solve the image and inertial fusion problem. The
open-source libraries are extended to include the statistical feature projection and matching techniques
developed in our previous research. The performance of the new processing method was demonstrated by
integrating the inertial and image sensors on a commercially-available laptop computer containing a
programmable GPU. Experimental data collections have shown up to a 3000% improvement in feature
processing speed over an equivalent CPU-based algorithm. In this experimental configuration, frame rates
of greater than 10 Hz are demonstrated, which are suitable for real-time navigation. Finally, the navigation
performance of the new real-time system is shown to be identical to that of the old method which required
lengthy post-processing.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

the presence of intentional or unintentional radio
frequency (RF) interference. Unfortunately, many
existing non-GPS forms of navigation have problems in
the same types of environments.

The navigation system presented in this paper is inspired
by biological systems. Many animals have the innate
ability to navigate naturally simply using biological
sensors. Some animals, such as sea turtles, use the
electro-magnetic fields of the Earth to navigate [13]. Ants
and many other insects use chemical trails to follow a
path [15]. More elaborate biological navigation systems
use sonar sensors to get an estimate of terrain and distance
[9]. However, all of these biological systems are
susceptible to interference, jamming, and changing
medium, and therefore exhibit the same weaknesses as
GPS systems. Animals that use passive sensors, such as
bees, migratory birds, and humans, however, are not
susceptible to these problems. These animals all use
inertial and imaging sensors to pick out landmarks in the
environment and navigate from landmark to landmark
with relative ease. In addition, these sensors are passive,
self-contained, and do not have the same weaknesses as
GPS.

When used separately, however, imaging and inertial
sensors have drawbacks that can result in poor navigation
performance. An inertial sensor relies upon dead-
reckoning [1] for navigation, which is susceptible to drift
over time. Imaging sensors can have difficulty in
identifying and matching good landmarks for
navigation [3]. To solve this problem, the sensor readings
in the navigation system were fused at a low level and
used to correct each other.

Previous image-aided inertial navigation systems have
been a trade-off of power and performance. Some have
used a simplified image processing algorithm [30], or a
priori navigation information [3], while others have
simply post-processed navigation data [31], [3]. These
solutions are not robust enough for use in autonomous
navigation systems or as a viable GPS alternative. The
navigation system described in this paper achieves real-
time performance using a complex image processing
algorithm that can work in a wide variety of
environments.

INERTIAL NAVIGATION

Inertial navigation systems (INS) exploit measurements of
specific force and angular rate to estimate the position,
velocity, and attitude of the device. For six degree of
freedom navigation, triads of accelerometers and
gyroscopes are usually employed. The inertial navigation
system is inherently a dead-reckoning device as the
navigation states are propagated by integration
(cumulative summing) of sensor measurements. As with

all dead-reckoning navigation systems, the navigation
error is subject to unconstrained errors [1], which are
collectively defined as the sensor drift.

The inertial navigation system errors can be estimated and
corrected by incorporating additional measurements. For
terrestrial applications, the zero-velocity update is easily
implemented and, as such, quite commonly used in
systems such as [31],[20]. Another common
measurement source for estimating the navigation state
errors is the Global Positioning System [22],[30].
Unfortunately, GPS measurements are not always
available, which motivates the development of additional
navigation state measurement sensors. Navigation aiding
using imaging sensors is described in the next section.

IMAGE-AIDING

Image sensors can also be used to correct an INS. Most
image-aided inertial systems work by first identifying
features (landmarks, edges, corners) in an image. The
process of extracting features from the actual sensor
readings is known as feature extraction, or feature
transformation, of the image. Image-matching algorithms
match features from an image taken at one point in time
to features from an image taken at a later point in time.
The process of matching features between successive
images is known as feature correspondence.

The simplest way to perform feature correspondence is to
perform a search over the entire space of another image,
also known as an exhaustive search. This procedure is
obviously computation-intensive and costly, in terms of
time and computation resources. For example, in a
system with Nk features in image k, the complexity of
performing an exhaustive feature correspondence search
in Big-O notation [11] is O (Nk * Nk+1). This relationship
is illustrated in Fig. 1.

IMAGE Nk

IMAGE Nk+1

Figure 1: Exhaustive method of correspondence search.
Given the projection of image Nk and successive image
Nk+1 into feature space, the exhaustive correspondence
search is carried out by attempting to match every feature
from Nk to every feature in Nk+1.

However, when other sensors are available, it helps to use
these sensors to constrain the correspondence search
space. In an image-aided INS, inertial measurements can
be used to predict feature locations from one image to the
next. The search area can then be constrained to a subset
of the features in a successive image that are found within
a certain distance from the predicted location. The
resulting complexity is O (Nk). In addition, the difference
between the predicted feature location and the actual
feature location can be used to correct IMU biases. The
constrained search is shown in Fig. 2.

IMAGE Nk

IMAGE Nk+1

Constrained Search

Figure 2: Constrained method of correspondence search.
Given the projection of image Nk and successive image
Nk+1 into feature space, the constrained correspondence
search is carried out by attempting to match every feature
from Nk to an constrained area around the predicted
location in Nk+1.

Systems that use feature matching have been of limited
value in the past, because most image processing
algorithms were not suited to navigation purposes. Image
processing for navigation requires features that can be
uniquely identified despite movement of the sensor
platform. The platform movement results in features
being viewed from multiple angles, distances, and among
other similar objects. To accomplish this feat, a feature
has to have some kind of unique identifier that is invariant
to changes in orientation and scale. False positive
identification is especially detrimental in feedback-
enabled navigation, since the landmark data is used to
correct other system sensors. False identification will
corrupt the other sensor readings and lead to poor
navigation prediction. The main problem with using
complex features, from a computation standpoint, is that
feature extraction requires extensive computation [3].
This problem is compounded by the fact that the identifier
needs to be sufficiently complex to ensure uniqueness,
which increases feature correspondence search times.

To overcome this problem, past systems have used a
priori environment information to choose features. One
such system, MOB-LAB, navigated streets by using the

lines on the road as features [2]. The problem with this
approach is that the environment becomes un-navigable
when lines are unavailable, such as when the vehicle goes
off-road. Other systems, such as Minerva [29] and [21]
tracked lights and ceiling tiles to determine their position
at any epoch in time. Algorithms that use a priori
information in this manner can be classified into a subset
of navigation systems that rely upon reference landmarks
for navigation. Such systems often use landmarks with a
known, fixed coordinate (i.e., waypoints) to help guide
and correct the navigation system. These systems have
been met with some recent success, as Stanford has found
with their “Stanley” vehicle for the DARPA Grand
Challenge, 2005 [26]. However, to make an image-aided
navigation system work in unknown environments, it
must choose features that are invariant to scale and
rotation without any a priori feature information.

SENSOR INTEGRATION

The previous two sections described how position can be
accurately determined using inertial sensor readings for
dead-reckoning navigation and feature correspondence
from image sensors to correct the IMU estimates.
However, the IMU estimates are in three-dimensional
coordinates, while the image features are found in a two-
dimensional Cartesian plane. To get accurate 3D position
for a feature, the 2D coordinate must be augmented to a
3D coordinate, which requires additional information,
namely, the line-of-sight distance from the navigating
platform. This is impossible in most situations using an
image sensor alone. A priori terrain maps are necessary
to extract distance information using a monocular image
sensor. However, if the navigation platform has multiple
image sensors (e.g., binocular vision), the distance to a
feature can be calculated using information about the
image sensors, their relation to each other, and their
relation to the navigation platform [31]. Another way to
obtain distance information is to use a single image sensor
and a ranging sensor, such as LIDAR [27] or sonar [4].

Obviously, better results can be obtained using additional
sensors. To optimally use these additional sensors, the
theory of multi-sensor fusion must be taken into account.
This way the system can perform optimally given any
number of sensors without redesigning the underlying
system architecture. The navigation system in this paper
actively acquires sensor readings and fuses the data into a
single, combined navigation estimate. Therefore, the
delay in navigation prediction is directly tied to two
factors: the time it takes to acquire sensor readings and
the time it takes to fuse the data.

The navigation system presented in this paper ensures
optimal sensor data acquisition by decoupling the sensor
activity from the navigation state prediction. Decoupling
is accomplished by using a thread-safe, centrally-shared

data storage object between all the sensors and the
navigation component of the software. Each sensor has
the ability to write to a particular area of shared memory
(section of the blackboard) and the navigation component
has access to all the sensor data. Thread synchronization
for navigation reading and sensor writing is accomplished
via use of mutually exclusive locks and conditions. The
blackboard architecture is not new. It was developed by
Artificial Intelligence researchers over a decade ago, and
is described in detail in [8] and [5]. This architecture
applied to sensor fusion was met with success in the 2005
DARPA Grand Challenge [24]. The strength of this
technique is that as more sensors are added to the
platform, navigation predictions are not slowed down
while waiting for sensor acquisition. This makes the
approach flexible and extensible for additional sensors.
The blackboard architecture for a multi-agent (multi-
sensor/multi-thread) software platform is illustrated in
Fig. 3.

Blackboard (Data Repository)

Sensor Data Control Policies

Sensor
Controller

Control Agent
Control Agent

Figure 3: Blackboard architecture. This software
architecture allows multiple sensors to acquire data and
write to a central, shared data repository. Control agents
can then access the shared sensor data and write policies
that govern access to this data by multiple agents.

The navigation component of the navigation system is
responsible for fusing the acquired data that has been
written to the blackboard into a single navigation
prediction at any epoch in time. This fusion is currently
performed using an extended Kalman filter. This fusion
method was chosen because of its successful application
in previous work [24], [21]. The conceptual design of the
Kalman filter applied to multi-sensor fusion is shown in
Fig. 4.

Kalman filter framework

Kalman Filter
UpdatePrediction

Sensor
Sensor

Sensor Capture

Sensor
Sensor

Sensor Control

State Estimate
Xt-1

Platform Pose
Navigation Prediction

Xt

Figure 4: Conceptual Kalman filter for a multi-sensor
system. The previous state Xt-1 is used to create a
prediction for the next state, Xt. Multiple sensors are
used as additional input to the prediction and combined
in the Kalman filter to come up with the navigation
prediction. In addition, the Kalman filter can be used in a
closed-feedback system to correct future predictions.

The Kalman filter is an optimal, recursive, data
processing algorithm used to estimate the state (position,
heading and orientation) of a dynamic system from
incomplete, noisy measurements (sensor readings). To
predict the current navigation state at any time, t, the state
Xt is computed using the previous state Xt-1, and inputs
from the system sensors. In addition, the Kalman filter
can compute the estimated accuracy of the state estimate.
This accuracy is computed in the error covariance
matrix, Pt.

The second phase of a Kalman filter is the update phase,
which uses measurement information from the current
time to refine the prediction and come up with better
estimates. For this application, the measurement
information is the residual results from feature
correspondence. The residual distance between feature
predictions and actual locations is used to adjust the
biases for the inertial sensors. The multi-sensor Kalman
filter, adjusted for imaging and inertial fusion, is shown in
Fig. 5. For more information on Kalman filtering, refer to
[21], [32] and [16].

Kalman filter framework

Images Feature Tracker

Kalman Filter
Update

INS

Platform Pose
Navigation Prediction

XtInertial
Data

State Estimate
Xt-1

Figure 5: Kalman filter used for the image-aided inertial
navigation system. Images and Inertial Data are the
sensor readings, which are used as inputs for the
navigation predictions by the Feature Tracker and INS.
The Kalman filter combines the predictions and performs
feedback to correct the INS and Feature Tracker module.
In this way, the Kalman filter removes errors from the
INS trajectory.

REAL-TIME PROCESSING

Real-time processing has been redefined many times over
the past few decades. The term real-time originally
referred to any system that could perform computations at
least as fast as the real process it was simulating [12].
This definition changed during the advent of thread
priority scheduling and programmable microcontrollers.
These technologies allowed a process to pre-empt the
operating system, resulting in increased performance,
reliability and predictability.

Current real-time systems are now divided into two
categories; hard real-time systems and soft real-time
systems. Both categories are governed by the idea of a
deadline from an event to a system response. The two
differ in that a hard real-time system considers the system
response after a deadline to be useless, whereas the soft
real-time system will tolerate a missed deadline (usually
with some impact on performance), and continue to
operate [12]. Hard real-time systems are thus best suited
to safety-of-life applications, while soft real-time systems
are suited to applications that involve concurrent access
with changing situations.

The navigation system presented in this paper relies upon
concurrent access to data from multiple sensors, and is
therefore best suited for a soft real-time system. The
event associated with this real time system is sensor data
acquisition, and the response is a navigation prediction.
The deadline can vary depending on the application, but is
limited by the maximum capture rate of the slowest
sensors. For example, a typical image sensor can capture
an 800x600 monochrome image at 30 frames per second
(FPS), or 30 Hz. A typical IMU can capture inertial data
at rates exceeding 100 Hz. Therefore, the deadline should
be set to 33 ms or greater, since that is the capture rate of
the slowest sensor.

Deadline 2 (image 2)

Acq Feature Extraction

N1 N2

Acq Feature Extraction

Sensor 1 Thread

Sensor 2 Thread

Navigation Thread

Time
Deadline 1 (image 1)

Inertial Propagation

Figure 6: Deadline timing for 2 image sensor threads.
Sensor 1 and sensor 2 simultaneously acquire images and
perform parallel feature extraction on the GPU. N1 and
N2 represent the navigation calculations for sensor 1 and
sensor 2, respectively, which are performed in serial. The
deadlines are the elapsed time between the initial image
capture time and the time when the navigation prediction
is made available.

A dynamic deadline is utilized in this navigation system.
Features are extracted from the image sensors as the
images are acquired, and written to the data repository.
The navigation component runs concurrently in a separate
thread and accesses the sensor data from the data
repository as it becomes available. It uses this data to
perform inertial propagation, a feature correspondence
search, and combines all the data in a Kalman filter. The
total time between sensor acquisition and navigation state
computation (deadline) is the sum of the time between the
image capture signal and the navigation component
computations. The diagram in Fig. 6 illustrates this
relationship.

Processing navigation predictions concurrently with
sensor data acquisition is much more complicated than a
serial procedure. The two processes need to be
synchronized and controls need to be in place to ensure
that sensor data is not acquired faster than it can be used.
Data acquisition at a faster rate than data processing
would overrun the data repository after a length of time.
Synchronization for data structure reads and writes is
achieved via mutually-exclusive locks and condition
objects. For this navigation system, navigation state
computation is kept relatively simple to ensure that it runs
at a much faster rate than sensor acquisition. In addition,
the computationally-intensive image processing step is
coupled to the image sensor data acquisition, which adds
an additional constraint and limits the sensor rate to one
that is acceptable for processing. The only problem with
coupling image processing to the data acquisition step is
that the image capture rate is limited by the speed of
feature extraction.

SIFT FEATURE EXTRACTION

The feature extraction algorithm used for the navigation
system presented in this paper is called the Scale Invariant
Feature Transform, or SIFT [14]. Conceptually, SIFT
works by first decomposing an image into a scale-space
representation. Decomposition results in a different type
of information being available at each level of
decomposition, but also allows the algorithm to separate
extrema (local minima and maxima) in an image into the
scale at which they are most prominent. Extrema are
chosen from a progressively-scaled set of images that
have been reduced to a lower level of detail via Gaussian
blurring. Each resulting extremum is then assigned an
orientation by taking a histogram of the gradient in a fixed
area around it. The gradient around the extremum is used
to compute a distinctive descriptor that can be used for
matching features.

Figure 7: CPU vs. GPU timings for SIFT extraction for a
GPU-based feature extraction program. For a 5x
increase in width, the GPU experiences a 100 ms
increase, while the CPU experiences over 400 ms
increase in processing time.

SIFT feature calculation is a time-consuming and
computation-intensive process. The table in Fig. 7
summarizes the expected time to calculate SIFT features
at various image resolutions and feature counts using a
CPU and a GPU from [25].

The computation times for the CPU are not acceptable for
real-time image-aided navigation. The image
measurements are used in the update phase of the Kalman
filter to correct dead-reckoning measurements. In
between image measurements, the inertial data alone is
used to determine the navigation prediction. If the system
uses a consumer-grade IMU, then the navigation solution
can drift significantly between image measurements. If
the image measurements are far apart (> 1 second), the
navigation solution will limited by the accuracy of the
IMU sensor. The data set above shows that feature
extraction alone on a large image (1280x1024) would take
over 1 second, which is unacceptable for an accurate
navigation solution.

Since sensor data acquisition is coupled to the speed of
feature extraction, it is clear that the biggest navigation
system gains come from faster image processing and
feature extraction. This enables more image updates,
resulting in more error corrections on the inertial
measurements.

IMAGE PROCESSING ACCELERATION

The navigation system presented in this paper leverages
the power of the programmable graphics processing unit
to speed up feature extraction. Much like the
programmable microprocessor was a leap forward in real-
time system programming; the programmable GPU is a
leap forward in high performance computing using
commodity hardware. Typical speedups vary depending
on implementation, but simple math operations performed
on a GPU have found speedups between 30% and 400%
over the CPU performance. The speedup is due to both
the hardware configuration and processor architecture.

Modern video cards contain an onboard GPU dedicated to
processing a limited number of operations on very large
amounts of data. By contrast, the CPU is designed to
perform a large number of operations on a small amount
of data. This difference in purpose has led to divergent
paths for CPU and GPU architecture. A typical GPU will
have several processing pipelines working in parallel with
each other, while a single-core CPU has a single
processing pipeline.

Recent advances in multi-core CPU technology have
made them more similar to the GPU in terms of
architecture and performance. However, the processing
power of the GPU is growing at a rate faster than Moore’s
Law [17], which models the CPU performance growth.
The processing power gap is evident even when
comparing older GPUs to single-core CPUs. Leading
edge consumer-grade GPUs doubled the performance of
leading-edge CPUs [10]. The table in Fig. 8 summarizes
the processing power of various newer GPU architectures
vs. CPU architectures using the Linpack Giga-flops
(GFLOPS) rating [6].

GPU/CPU/Supercomputer GFLOPS
Intel Pentium 4 10
NV 5900 20
Intel Dual Core 38
Intel Quad Core 62
NV 7800 GTX 200
NV 8800 GTX 330
Cray XT3 (10,000 CPU) 43,480
IBM BlueGene (100,000 CPU) 280,600

Figure 8: CPU vs. GPU vs. Supercomputer performance
using the Linpack GFLOPS rating, a measure of billions
of floating point operations possible per second. The
supercomputers are suffixed by the number of processors
they contain.

The table makes one point very clear: consumer-grade
CPUs are outperformed in raw computational power by
the specialized GPUs, and GPUs are only getting faster.
One can make the case that GPUs are outmatched by the
supercomputers on the list. However, the supercomputers
run thousands of processors in parallel to achieve their
GFLOPS rating. If they were scaled to a single processor,
their rating would be one-hundredth that of a single GPU.
The reason for the large disparity is the specialized
architecture of the GPU versus the generalized
architecture of the CPU. The GPU was built to perform
stream processing on large amounts of data.

Operation AData Data Operation B Data

pipe filter

Kernel Kernel
pipe filter

Stream Stream Stream

Operation

Element i

CPU-based pipe and filter

GPU-based pipe and filter

Figure 9: Pipe and filter on a CPU-based system vs.
GPU. The CPU-based pipe and filter must perform serial
operations on each element in the data stream, while a
GPU can perform the same operation in parallel, using a
kernel on parallel data sets.

The stream-processing architecture also contributes to
making the GPU well-suited for image processing
applications. While a CPU is designed to operate on data
serially, the GPU is designed for parallel data processing.
This means that the larger the data set, the more
advantage is gained from stream processing. One can
view the difference as analogous to a pipe and filter
architecture, where a CPU has a single pipe and multiple
filters, whereas a GPU has multiple parallel pipes and
multiple filters. The CPU must unroll the operations in
each filter and perform the filter operations on each data
element, while the GPU can perform the operation on
multiple sets of data in parallel [28]. The two
architectures are illustrated in Fig. 9.

GPU RENDERING PIPELINE

The GPU is designed to work on streams of vertex and
fragment data. There are three basic stages to the
rendering pipeline: vertex, texture, and fragment. The
stages are diagrammed in Fig. 10 and explained in further
detail in the following section.

GPU

Video Memory DisplayFrame Buffer
Pixel Buffer

Vertex Processor Fragment Processor

TexturesVertices

rasterization

Figure 10: Programmable GPU rendering pipeline.
Images and geometric primitives take different paths.
Images are rendered by adding the image pixel values as
a texture lookup, then rasterizing the entire image as
geometry. Geometric primitives are drawn using a vertex
processor, then applying texture lookups.

Vertices describe 2D points in 3D space which make up
primitive geometric shapes for a scene. The vertex data
used to be static on non-programmable GPUs. To make
changes to a geometric shape, the data had to be
transferred to the CPU, altered, and then transferred back
to the GPU. On modern programmable GPUs, vertices
can be transformed in the GPU using custom vertex
shader programs.

Textures are images that can be mapped onto surfaces of
geometric primitives created in the vertex stage. In the
texture stage of the rendering pipeline, the texture is
referenced for the correct color to add to each fragment
before they are converted to pixels.

A fragment is the term used to describe intermediate data
in the processing pipeline before a pixel is drawn to the
screen. Fragments can occupy more than one pixel
location. Fragment shaders are customizable on modern
GPUs and can also perform memory reads during texture
lookups.

The last step of the graphics rendering pipeline is
outputting pixels to the screen. This can be done either
using a conceptual framebuffer object or using pixel
buffer objects. The framebuffer is global “screen”
memory. It can be corrupted if windows are stacked on
top of each other or if windows are moved partially off-
screen. This problem is avoided by using pixel buffer
objects to store pixel data for off-screen rendering.

GENERAL-PURPOSE GPU

To utilize the graphics rendering pipeline for general-
purpose computation, the data must be transformed to the
native GPU format and architecture. The simplest way to
do so is by mapping input data to fragment data. Custom
vertex programs are written to change the geometry of the
image as needed. Custom fragment programs can then
operate on a per-pixel basis, using lookups from the
custom textures to transform color information for each
fragment. These vertex and fragment shader programs
can be written using a variety of APIs and high-level
shading languages. For more information on
programmable shaders and OpenGL, see [23] and [18].

The image-processing component of the navigation
system described in this paper was written using the
OpenGL API and Nvidia’s CG high-level shading
language. CG compiles C/C++-like shading programs
into assembly language that can be understood by the
GPU. An existing GPU-based feature extraction
algorithm, OpeNVIDIA [7], was used as the basis for the
CG scripts and frame buffer objects. The OpeNVIDIA
fragment shader programs take data acquired from the
image sensors and perform the SIFT feature extraction
algorithm (described in the SIFT section) as progressive

filters. The filters are used to choose the best prospective
feature candidates and compute SIFT descriptors for each
feature. To avoid unnecessary memory allocation and to
keep feature processing on the GPU, feature information
is stored in the high-performance texture memory that
held the original image.

EXPERIMENTAL RESULTS

Experimental results from the navigation system have
been very positive. Sensor decoupling and multi-
threading alone provide a noticeable speedup in
processing time. GPU-accelerated feature extraction
speedups are orders of magnitude greater than the
expected baseline results, and free tremendous amounts of
CPU capacity for other tasks. Lastly, improvements to
the algorithm and data structure reuse result in much more
efficient processing and better performance
characteristics. Results in each of these areas are
described in the sessions that follow.

RESULTS: SENSOR DECOUPLING

The navigation system created in our previous work [31]
was capable of post-processing navigation data and
coming up with a navigation solution with near GPS-level
accuracy. The system suffered from slow navigation
prediction computation because it was a single-threaded,
serial application. The new system is a multi-threaded,
highly-parallel software platform, which matches well to
multi-sensor fusion problems. Data acquisition for each
sensor was assigned to a separate thread, which alleviated
problems of sensor priority and availability.

Several simulations were run without using the GPU for
feature extraction to test the effect of sensor decoupling
on the overall system. The simulations were run on a set
of time-tagged images and inertial data during an indoor
data collection experiment at AFIT in August, 2006. The
image, feature, and inertial data were all loaded from file
on-the-fly, to emulate sensor readings. The results were
impressive despite the fact that all data was read from file,
which classically results in worse performance. For a
simulation that lasted 277 seconds in “real-time”, the
post-processing solution took 677 seconds to complete
and the decoupled system took 276 seconds to complete,
which meets the classic definition of real-time. The
completion time was a result of running the sensor
“acquisition” (reading from a file) in serial. The
simulation was also run using parallel sensor acquisition,
resulting in an additional 20% speedup. Even without the
parallel sensors, the new system shows a 2-3x speedup
over the previous solution. In addition, the navigation
prediction was within 2 meters of the actual (true)
position. A similar speedup was found when running
longer simulations as well.

RESULTS: GPU ACCELERATION

The initial results for GPU-accelerated feature extraction
were also very impressive. The feature extraction tests
were performed on indoor images used for navigation,
using a C#-based SIFT feature extraction program for the
CPU [19], versus OpeNVIDIA for the GPU-based feature
extraction. The feature extraction step, typically the
majority factor of a real-time deadline, was reduced from
several seconds to milliseconds for high-resolution
images.

Additional tests were run using the GPU-accelerated
feature extraction for navigation predictions. The tests
were set up using binocular image sensors and a
consumer-grade IMU. Initial results found sustainable
frame rates of 10 to 16 FPS, which is suitable for use in
real-time navigation. The dynamic deadline for the
experimental system was found to vary between 300 and
500 ms, indicating that approximately 0.5 seconds of lag
could be expected before the sensor platform would have
reliable navigation data for any epoch in time. (The
impact of this delay could be negated by using the INS to
propagate forward in time while the calculation is
ongoing). Navigation results from initial tests lacked
accuracy due to poor sensor calibration. This problem is
currently being addressed and should be rectified soon.
This problem illustrates the importance of sensor
calibration for an accurate navigation solution.

CPU vs. GPU feature extraction times

1000

2000 2000

4500

28 57 63 118
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

512 1024 1280 2048

Image Resolution

Ti
m

e
(m

s)

CPU : Intel 2.0 Ghz dual-core, 2 GB RAM

GPU: NVIDIA Geforce Go 7950

Figure 11: CPU vs. GPU feature extraction times using
OpeNVIDIA on indoor images used for navigation.
Although processing times generally increase due to
image size, CPU times show a much larger increase due
to image size than the GPU.

The additional benefit from performing feature extraction
on the GPU is that the CPU is freed for other tasks, as can
be seen in Fig. 12. The majority of the CPU usage is due

to navigation prediction calculations. Further
optimizations could be made by offloading more
navigation computations to the GPU, which would free
more CPU resources. In addition, many of the Kalman
Filter calculations could be done in parallel, which the
GPU can perform very efficiently.

Figure 12: CPU and GPU performance graph running
the navigation system. The graph was created using the
gDebug tool from Nvidia. CPU usage is approximately
50% on average, GPU usage is approximately 20% on
average.

CONCLUSION

The navigation system presented in this paper represents a
new area to explore in precision non-GPS navigation.
The system is biologically-inspired, works in real-time,
and fuses image-aided and inertial sensors. Two main
strengths of this approach are the use of passive sensors
for navigation and no requirements for a priori
environment information. These strengths enable the
navigation system to work in a variety of environments
where previous navigations systems would fail.

The navigation system was designed with goals of near-
optimal multi-sensor fusion and real-time processing.
Both were achieved by building on the blackboard
architecture style. This architecture allows the sensors to
be decoupled from the navigation component, while
simultaneously providing the navigation component
access to all the sensor data. The sensors are fused
through the use of an extended Kalman filter, which has
been used successfully by many researchers in the past for
similar problems.

The navigation system also harnesses the power of the
Graphics Processing Unit to perform feature extraction on
data from the image sensor. The feature extraction
algorithm used is the Scale Invariant Transform, or SIFT,
which has been an algorithm of choice for many
navigation applications. SIFT’s main drawback is the
computation required to extract features, which has
previously kept it from being used for real-time
applications. This problem is overcome through the use
of the GPU for general-purpose computation. Initial
results have found a 4-30x speedup in feature extraction,
which is a drastic improvement over equivalent
mathematical algorithm speedups due to GPU processing.
These speedups over the expected results are due to
efficient stream processing and the PCI express interface,

which allows a much higher communications bandwidth
from the CPU to GPU.

Experimental results have seen a drastic improvement in
processing speed for navigation simulations. The speedup
achieved from decoupling the sensors and multi-threading
doubles the speed of the previous work. The overall
performance improvement has been approximately 10x–
20x in conjunction with the GPU-accelerated feature
processing. When taken in the context of live camera
processing, the resulting navigation system can expect to
run at several more frames per second, which results in a
much more accurate navigation prediction.

The navigation system presented in this paper has many
interesting implications. First, it runs real-time on
mobile, commodity hardware. This means that the
navigation system can be easily duplicated and mounted
onto mobile platforms. Second, it runs in a variety of
environments without the aid of GPS, waypoints or a
priori information, making it well-suited to unknown,
GPS-denied/unavailable environments. Third, it does not
consume as many CPU resources as the previous image-
aided inertial navigation system did. By offloading the
majority of the computation to the GPU, resources are
freed to run additional applications, such as an artificial
intelligence, networking, data storage, or map-building
applications.

DISCLAIMER

The views expressed in this article are those of the author
and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the
U.S. Government.

ACKNOWLEDGEMENTS

The authors would like to thank the Air Force Research
Laboratory for their sponsorship and funding of this
research.

REFERENCES

[1] Nathaniel Bowditch. The American Practical

Navigator, an Epitome of Navigation. National
Imagery and Mapping Association, 1995.

[2] Alberto Broggi, Simona Berte. Vision-Based Road

Detection in Automotive Systems: A Real-Time
Expectation-Driven Approach. Journal of Artificial
Intelligence Research 3, 1995.

[3] Zhenhe Chen, Jagath Samarabandu, Rango Rodrigo.

Recent Advances in Simultaneous Localization and
Map-building Using Computer Vision. University of
Western Ontario Publishing, May 2007.

[4] Albert Diosi, Lindsay Kleeman. Advanced Sonar

and Laser Range Finder Fusion for Simultaneous
Localization and Mapping. Proceedings of 2004
IEEE/RSJ International Conference on Intelligent
Robots and Systems. Sendai, Japan, 2004.

[5] Jing Dong, Shanguo Chen, Jun-Jang Jeng. Event-

based Blackboard Architecture for Multi-Agent
Systems. The Proceedings of the IEEE International
Conference on Information Technology Coding and
Computing (ITCC), pages 379-384, April 2005.

[6] Jack Dongarra, Piotr Luszczek, Antoine Peitet. The

LINPACK Benchmark: Past, Present, and Future.
University of Tennessee, Computer Science
Technical Report Number CS - 89 – 85, 2001.

[7] James Fung, Steve Mann, Chris Aimone.

OpenVIDIA: Parallel GPU Computer Vision.
MULTIMEDIA, pp 849-852. ACM Press, 2005.

[8] David Garlan, Mary Shaw. An Introduction to

Software Architecture. Advances in Software
Engineering and Knowledge Engineering, vol I.
World Scientific Publishing Company, 1993.

[9] Donald Griffin. Bat Sonar. Time Magazine. May,

1950.

[10] Francis Kelly, Anil Kokaram. General Purpose

Graphics Hardware for Accelerating Motion
Estimation. Irish Machine Vision and Image
Processing Conference (IMVIP), Sept 2003.

[11] Donald E. Knuth. Big Omicron and Big Omega

and Big Theta. SIGACT News, 8(2):18-24, 1976.

[12] H. Kopetz. Real-Time Systems, Design Principles

for Distributed Embedded Applications, Chpt. 10-11.
Klower Academic Publishers, 1997.

[13] Kenneth Lohmann. Regional Magnetic Fields as

Navigational Markers for Sea Turtles. Science, 2001.

[14] David G. Lowe. Distinctive image features from

scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[15] Lino Marques, Urbano Nunes, Aníbal T. de Almeida.

Thin Solid Films. Volume 418, Issue 1, Oct 2002.

[16] Peter S. Maybeck. Stochastic Models Estimation and

Control, Vol II. , 1979.

[17] Gordon Moore. Cramming more components onto

integrated circuits. Electronics Magazine, 1965.

[18] Jackie Neider, Tom Davis, Mason Woo. The

OpenGL Programming Guide (Red Book). Addison-
Wesley Publishing Company, 1994.

[19] Sebastian Nowozin. Auto-pano SIFT.

http://user.cs.tu-berlin.de/~nowozin/autopano-sift/.

[20] S. Panzieri, F. Pascucci, G. Ulivi. An Outdoor

Navigation System Using GPS and Inertial Platform.
IEEE/ASME Trans. on Mechatronics, vol. 7, n. 2, pp.
134-142, 2002, IEEE, USA.

[21] S. Panzieri, F. Pascucci, G. Ulivi. Vision based

navigation using Kalman approach for SLAM. 11th
Int. Conf. on Advanced Robotics, Portugal, 2003.

[22] L. Pinto, G. Forlani, D. Passoni. Experimental Tests

on the Benefits of a More Rigorous Model in
IMU/GPS System Calibration. National Research
Program COFIN, Ministry of the University and
Scientific Research of Italy, 2002.

[23] Randi Rost. The OpenGL Shading Language.

Addison Wesley Publishing Company, 2006.

[24] G. Seetharaman, A. Lakhotia, et al. Technical

Overview of CajunBot (2005). Technical Report for
DARPA Grand Challenge, 2005.

[25] Sudipta N. Sinha, Jan-Michael Frahm, Marc

Pollefeys, Yakup Genc. GPU-based Video Feature
Tracking and Matching. EDGE 2006, workshop on
Edge Computing Using New Commodity
Architectures, Chapel Hill, May 2006.

[26] David Stavens, Hendrik Dahlkamp, Adrian Kaehler,

Sebastian Thrun, Gary Bradski. Self-Supervised
Monocular Road Detection in Desert Terrain.
Technical Report for the 2005 DARPA Grand
Challenge. 2006.

[27] Hartmut Surmann, Andreas Nuchter, Joachin

Hertzberg. An Autonomous Mobile Robot with a 3D
Laser Range Finder for 3D Exploration and
Digitalization of Indoor Environments. Robotics and
Autonomous Systems 45, pp 181-198, 2003.

[28] Chris J. Thompson, Sahngyun Hahn, Mark Oskin.

Using Modern Graphics Architectures for General-
Purpose Computing: A Framework and Analysis. In
35th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-35), 2002.

[29] S. Thrun, M. Beetz. Probabilistic Algorithms and the

Interactive Museum Tour-Guide Robot Minerva.
Journal of Robotics Research, July 2000.

[30] S. Thrun, Daphne Koller, Zoubin Ghahramani, Hugh

Durrant-Whyte, Andrew Y. Ng. Simultaneous
Mapping and Localization with Sparse Extended
Information Filters. Journal of Robotics Research,
2004.

[31] Michael Veth. Stochastic Constraints for Fast Image

Correspondence Search with Uncertain Terrain
Model. IEEE Transactions on Aerospace Electronic
Systems, 42(3):973-982, July 2006.

[32] Greg Welch, Gary Bishop. An Introduction to the

Kalman Filter. SIGGRAPH 2001, Course 8, 2001.

